A Comparison of the Readability of Graphs Using Node-Link and Matrix-Based Representations

Mohammad Ghoniem, Jean-Daniel Fekete, Philippe Castagliola

Presentation by: Roman Stanchak
Node Link

- Traditional graph representation
What do we want to know about a graph?
Motivation -- Examine 7 tasks

- Count Nodes
- Count Links
- Find Most Connected Node
- Find Specific Node
- Find Existence of Link
- Find Neighbor
- Find Path
Quick Experiment
20 Nodes, 100 Edges (60%)
Example Graph 2
50 Nodes, 230 Edges (20%)
Example Graph 3
100 Nodes, 2500 Edges (60%)
Connectivity Matrix

- Vertices along rows and columns
- i,jth entry indicates existence of edge between vertex i and vertex j
Connectivity Matrix
50 nodes, 400 edges
Experimental Comparison

- 36 Users
- 9 Random Graphs
 - 20, 50, 100 vertices
 - 20%, 40%, 60% edge density
- 7 Tasks
 - Time to answer
 - % correct
Predictions

- Connectivity Matrix better for:
 - Count Links
 - Most Connected
 - Find Specific Node
 - Find Link
 - Find Neighbor
 - Larger graphs

- Node–Link better for:
 - Find Path
 - Small graphs

- Similar for:
 - Counting Nodes
Results

• Connectivity Matrix better for:
 – Count Nodes*
 – Most Connected
 – Find Specific Node
 – Find Link
 – Find Neighbor
 – Larger graphs

• Node–Link better for:
 – Find Path
 – Small graphs

• Similar for:
 – Counting Links*

* Unexpected result
Summary of Results

- **Effect of Graph size**
 - Node-Link quickly deteriorates as node count increases.
 - Connectivity Matrix deteriorates more slowly as node count increases.

- **Effect of Edge density**
 - similar, but less pronounced

- **Exceptions**
 - Link count similar for both visualizations
Critique

- Only node count and density analyzed
 - Each of 9 graphs not considered individually
- Effect of lack of familiarity with Matrix
- Random graph configurations unrealistic
 - many real world graphs have high node count, low density
 - Social networks, computer networks, etc