3D for Information Visualization

CMSC734 Class Presentation
by Martin Stolen and Sureyya Tarkan
04/05/2007
Why 3D?

- High data resolution
- Close to “real world”
- 3D enhances spatial memory
 - 2D/3D symbols and setting
 - Time taken to locate object
 - Better performance with
 - Objects located in a non-planar setting
 - Objects with a 3D representation
3D Interface for 3D Tasks

- Scientific Visualization
 - Continuous variables
 - Surfaces, volumes
 - Physical entities
- Medical imaging
- Computer Aided Design/Engineering
- Teleoperation
 - Controlling robotic systems remotely
 - Mars rovers
 - Unmanned Aerial Vehicles
 - Operates in real world - 3D
Can we do Better than 3D?

- **Super-human capabilities**
 - Beyond “natural”
 - Tools that empower

- **Teleoperation example**
 - Occlusions and blind spots
 - Overlay model of known environment
 - “X-ray vision”
 - Multiple coordinated views
 - Add views of “impossible” angles
 - Overviews through birds-eye-views
 - Landmarks recognizable at any distance
Better than 3D - More Guidelines

- Allow teleportation
- Details on demand
- Tools to select, mark and measure
- History keeping
- Rich user actions on objects
- Enable remote collaboration
- Dynamic queries to filter out unwanted items
- Support semantic zooming
- Novel 3D icons
3D for Information Visualization

- Want effective use of pixels
- Categorical variables
- Discovery of
 - Clusters
 - Patterns
 - Trends
 - Outliers
 - Gaps
- Large number of variables
 - Scatterplot suitable
 - 3D versions do exist
 - 2D slices an option
3D for Hierarchical Visualizations

- **Cam Tree**
 - Tree of cones
 - Rotation of cones
 - Semi-transparent
 - Text overlapping
 - Occlusion

- **Information Cube**
 - Nested cubes as tree
 - Semi-transparent
 - A lot of vasted space
 - Small elements disappear
 - Occlusion
Demo

- GeoTime
- Hot Spot Matrix
- Order Execution Viewer
- Metropolitan Demographics
- Synchronization Viewer
- Risk In Motion
- 3D Performance Benchmark
2D and 3D Information Visualization of Web Content

- User interface designs for 3 Web browsers:
 - XML3D: integrates interactive view of the link structure of a site in 3D hyperbolic space with 2D list components.
 - Windows Explorer: traditional collapsible outline tree browser.
 - Snap Web site: edited, hierarchical structure navigated from an overview page.
User Study

- **Participants**
 - programmers of >2 yrs

- **Tasks**
 - Find an existing category or add new category to the directory scheme
 - Target category or requested response involves a single parent/path or multiple parents/paths

- **Procedure**
 - Locate the content directory in 3 min.
 - Answer the questions of choice of where to add
User Study (cntd)

- Results

![Bar chart showing results of User Study](chart.png)
Summary

- **Benefits**
 - 3D better for 3D tasks
 - Improves spatial memory

- **Limitations**
 - Occlusion
 - Inefficient use of screen space
 - Not better than 2D for multidimensional data