Universal Usability

• Design for larger and more diverse groups of users

• Technological advances that help deal with:
 - User diversity
 Age, language, disabilities, 1st-time vs. frequent users
 - Variety of technology
 Screen size, network speed, platform, version
 - Gaps in user knowledge
 General or specific
Temporal e.g. LifeLines

www.cs.umd.edu/hcil/lifelines
How to make an interactive map such as this accessible?
• but what about blind users?

• Particularly Important for Public Access
Outline

• Toward Universal Usability
• Focus on Information Visualization
• Two examples:
 - Sonification of geo-referenced statistical data
 - Helping users get started
Outline

• Toward Universal Usability
• Focus on Information Visualization
• Two examples:
 - Sonification of geo-referenced statistical data
 - Helping users get started
State of the art of citizen web access to statistical info on map
State of the art of citizen web access to statistical info on map

Unemployment Rate (percent) - 2001

Click for: PDF or JPEG version of the current map to print or save
Unemployment Rate (percent) - 2001

Map with 51 items.

AK is 5.2. Value is in the 5.4 - 6.5 range, Label: AK, Alaska: 6.2, Detail for AK.
AL is 5.3. Value is in the 4.8 - 5.3 range, Label: AL, Alabama: 5.3, Detail for AL.
AR is 5.1. Value is in the 4.8 - 5.3 range, Label: AR, Arkansas: 5.1, Detail for AR.
AZ is 4.6. Value is in the 4.4 - 4.7 range, Label: AZ, Arizona: 4.6, Detail for AZ.
CA is 5.3. Value is in the 4.8 - 5.3 range, Label: CA, California: 5.3, Detail for CA.
CO is 3.7. Value is in the 3.7 - 4.3 range, Label: CO, Colorado: 3.7, Detail for CO.
CT is 3.2. Value is in the 2.8 - 3.6 range, Label: CT, Connecticut: 3.2, Detail for CT.
DC is 6.5. Value is in the 5.4 - 6.5 range, Label: DC, District of Columbia: 6.5, Detail for DC.
DE is 3.5. Value is in the 2.8 - 3.6 range, Label: DE, Delaware: 3.5, Detail for DE.
FL is 4.7. Value is in the 4.4 - 4.7 range, Label: FL, Florida: 4.7, Detail for FL.
GA is 3.9. Value is in the 3.7 - 4.3 range, Label: GA, Georgia: 3.9, Detail for GA.
HI is 4.5. Value is in the 4.4 - 4.7 range, Label: HI, Hawaii: 4.6, Detail for HI.
IA is 3.3. Value is in the 2.8 - 3.6 range, Label: IA, Iowa: 3.3, Detail for IA.
ID is 4.9. Value is in the 4.8 - 5.3 range, Label: ID, Idaho: 4.9, Detail for ID.
IL is 5.3. Value is in the 4.8 - 5.3 range, Label: IL, Illinois: 5.3, Detail for IL.
IN is 4.3. Value is in the 3.7 - 4.3 range, Label: IN, Indiana: 4.3, Detail for IN.
KS is 4.2. Value is in the 3.7 - 4.3 range, Label: KS, Kansas: 4.2, Detail for KS.
KY is 5.4. Value is in the 5.4 - 6.5 range, Label: KY, Kentucky: 5.4, Detail for KY.
LA is 5.9. Value is in the 5.4 - 5.5 range, Label: LA, Louisiana: 5.9, Detail for LA.
MA is 3.6. Value is in the 2.0 - 3.5 range, Label: MA, Massachusetts: 3.6, Detail for MA.
MD is 4. Value is in the 3.7 - 4.3 range, Label: MD, Maryland: 4, Detail for MD.
ME is 3.9. Value is in the 3.7 - 4.3 range, Label: ME, Maine: 3.9, Detail for ME.
MI is 5.3. Value is in the 4.8 - 5.3 range, Label: MI, Michigan: 5.3, Detail for MI.
MN is 3.6. Value is in the 2.8 - 3.6 range, Label: MN, Minnesota: 3.6, Detail for MN.
MO is 4.7. Value is in the 4.4 - 4.7 range, Label: MO, Missouri: 4.7, Detail for MO.
MS is 5.5. Value is in the 5.4 - 6.5 range, Label: MS, Mississippi: 5.5, Detail for MS.
MT is 4.5. Value is in the 4.4 - 4.7 range, Label: MT, Montana: 4.5, Detail for MT.
Traditionally, tactile approaches to maps

Learning maps with a printed tactile Braille atlas
Tactile approaches to maps

Braille mouse gives Braille feedback for different regions
Tactile approaches to maps

Embossed map attached to touchscreen (www.touchgraphics.com)
but

• All require custom input devices or special printed tactile materials

• i.e. not really providing access for all

• Instead, we tried to use audio ONLY
Visualization
↓
Sonification
Use of non-speech audio to represent abstract data
To contrast, example use of “Real world” sounds

BATS project at UNC

Uses open library of spatial sounds as icons

Sonification

• Mono audio
• Stereo audio
• Spatial audio
 Left - Right
 Up - Down
 Front - back
 Distance

head-related transfer function (HRTF)

Perception of spatial effects improves when using “personal” HRTF

Generated using high performance dual performance processor or by saving large files of sound libraries
Sonification

• Mono audio
• Stereo audio
• Spatial audio
 Left - Right
 Up - Down
 Front - back
 Distance

head-related transfer function (HRTF)

Perception of spatial effects improves when using “personal” HRTF

Generated using high performance dual performance processor or by saving large files of sound libraries
Coordinated table and map views, e.g. counties of the state of Maryland
Superimposed on the color coded (choropleth) map is a representation of the
recursive 3x3 keyboard exploration grid.
Darker green indicates a higher value
Coordinated table and map views, e.g. counties of the state of Maryland
Superimposed on the color coded (choropleth) map is a representation of the
recursive 3x3 keyboard exploration grid.
Darker green indicates a higher value

www.cs.umd.edu/hcil/audiomap
Study with blind users

- 7 users
 - No residual vision
 - Basic computer skill
 - Rely on screen readers
 - Used govt. statistical data at work
 - Compensated for time

Total of 42 hours of observation

Session 1:
 - Self-paced tutorial + training tasks

Session 2 (another day):
 - 7 tasks
 - Free explore different map
 - Comparison with Excel

For tasks that did NOT require geo-knowledge:
 - Similar results. iSonic preferred (had extra shortcut commands)

For tasks requiring geo-knowledge.
 - 95% success with iSonic
 - with Excel: 67% for those you know geography well and 20% for others (who guessed)
A bivariate scatterplot and its heat map at the resolution of 9x9 grid.
A bivariate scatterplot and its heat map at the resolution of 9x9 grid.

Applets – Papers – Video – Source Code on the web!
Lessons

• Hard but possible!
• Needs a good command language
 - and good help for it
• Coordinate with table view
• Synchronize visual and audio
 - to permit collaboration
• Allow multiple input mechanism
 (including keyboard only)
• Still many questions e.g. choice of sounds
Something easier?
Color Blindness

• ColorBrewer www.colorbrewer.org
 - Suggests color sets
 - Indicates when it is acceptable for users with color blindness

• VisCheck www.VisCheck.com
 - Simulates color blindness
 - Suggest enhancements
Addressing Universal Usability
Colorblindness

Check your color choices
(www.VizCheck.com)
Download a PhotoShop filter
Outline

• Toward Universal Usability
• Focus on Information Visualization
• Two examples:
 - Sonification of geo-referenced statistical data
 - Helping users get started
Universal Usability

• Design for larger and more diverse groups of users
• Technological advances that help deal with:
 - User diversity
 Age, language, disabilities, 1st-time vs. frequent users
 - Variety of technology
 Screen size, network speed, platform, version
 - Gaps in user knowledge
 General or specific
Helping Users get Started

Example of challenge:

Improving 1st access to interactive visualization tools

Map + Table + Dynamic Queries + Scatterplot

Usability tests at Census showed many problems

Need for help

But manuals not read tutorials too long...

What else could we do?

3 approaches investigated

Kang, H., Plaisant, C., Shneiderman, B.
New Approaches to Help Users Get Started with Visual Interfaces: Multi-Layered Interfaces and Integrated Initial Guidance
Proc. of the Digital Government Research Conference, 141-146
Helping Users get Started

Example of challenge:

Improving 1st access to interactive visualization tools

Map + Table + Dynamic Queries + Scatterplot

Usability tests at Census showed many problems

Need for help

But manuals not read
tutorials too long…

What else could we do?

3 approaches investigated

Kang, H., Plaisant, C., Shneiderman, B.

New Approaches to Help Users Get Started with Visual Interfaces: Multi-Layered Interfaces and Integrated Initial Guidance

Proc. of the Digital Government Research Conference, 141-146
Helping Users get Started

Example of challenge:
Improving 1st access to interactive visualization tools

Map + Table + Dynamic Queries + Scatterplot

Usability tests at Census showed many problems

Need for help
But manuals not read
tutorials too long...
What else could we do?

3 approaches investigated
Kang, H., Plaisant, C., Shneiderman, B.
New Approaches to Help Users Get Started with Visual Interfaces:
Multi-Layered Interfaces and Integrated Initial Guidance
Proc. of the Digital Government Research Conference, 141-146
1- Multi-layered interfaces

instead of 1 level

map + table
+ filters
+ scatterplot
1- Multi-layered interfaces

instead of 1 level

3 levels, of growing complexity

map+table +filters +scatterplot

map+table

map+table +filters +scatterplot

map+table +filters +scatterplot
1- Multi-layered interfaces instead of 1 level

3 levels, of growing complexity

map+table +filters +scatterplot

map+table +filters

map+table +filters +scatterplot

Benefits:
- easier to get started

Risks:
- user may not visit the higher levels
- confusion about transitions
1- Multi-layered interfaces instead of 1 level

3 levels, of growing complexity

Benefits:
- easier to get started

Risks:
- user may not visit the higher levels
- confusion about transitions

2- Sticky Notes

• Overlaid on top of working interface
• Locates **main** interface widgets
• “Show me” function
 - Introduces main procedures as series of steps
 - Provides explanation of the effect of actions
• Lists example tasks
• Active at the start
1 level

Very crowded
(even with only a subset of features explained)

OK only for simpler interfaces

3 levels
3) “Show Me” recorded demos

- Demonstrations recorded with Camtasia and saved as flash video
- Full screen (gives impression of being in the interface)
- Audio explanations crucial

Plaisant and Shneiderman,
Show Me! Guidelines for Producing Recorded Demonstrations
VL/HCC'05
Search in medical records