Traffic Trender: Exploring Bottlenecks at a Systematic Level

Chris Musialek Chengchen Lin Hua He Zha Sheng Richard Johnson

Abstract

The quantity of well-structured traffic incident data collected by government organizations continues to expand at an alarming rate. While the number of transportation information visualization applications has grown over the past several years, there remain few infovis applications dedicated to helping road planners analyze trends of traffic data over long periods of time. In this paper, we present Traffic Trender, a systematic level traffic bottleneck viewer that combines a zoomable treemap, a set of line charts, and a rich set of filters to uniquely assist planners in identifying insights. In particular, we attempt to enhance the ability of these analysts to find trends in traffic incidents per geographic region, over time, and easily identify outliers and anomalies. We then reflect on how our design makes progress towards these goals by providing results of a usability study which identify continued problems and areas for improvement.

Keyword
Information visualization, transportation, traffic trends, usability studies, exploratory data analysis.

1 Introduction and Motivation

Road planners are regularly faced with the difficult task of making important determinations as to the prioritization and allocation of limited transportation funds for road re-design, paving, and improvements. Many of these types of projects incur substantial financial costs. Because state and local transportation agencies continue to be stretched for budget dollars, as a result, more and more are turning to data analysis and visualization to identify the worst areas of congestion. In particular, planners are interested in whether certain geographic regions are getting better or worse over time, and whether there are temporal/seasonal patterns in bottlenecks. They also struggle to find ways to visualize outliers, anomalies and traffic spikes across long periods of time.

Luckily, the quantity of well-structured data capturing real-time traffic conditions is also growing exceptionally fast. The emergence of GPS in many new models of vehicles has provided unprecedented accuracy and granularity of real-time road conditions. While many good examples of traffic incident tools are beginning to emerge to help visualize real-time traffic conditions, few if any have devoted to visualizing these data over time. We hypothesize that planners could benefit significantly from taking a full system level approach to viewing these data.
In this paper, we present Traffic Trender, a systematic level traffic bottleneck viewer that combines a zoomable treemap, a set of time-based line charts, and a rich set of filters to uniquely assist planners with these particular problems. By allowing the planner to take a holistic view of the traffic bottleneck system, we provide a way for them to be able to more easily answer important questions such as: are certain geographic regions getting better or worse over time, are there temporal and/or seasonal patterns in bottlenecks, and how can one easily find outliers, anomalies, and abnormal patterns. Our application also provides an easy way to compare locations, minimizing cognitive load, and at the same time preserves flexibility for the user to choose the data metrics they would like to compare (described below).

2 Data

Our system consumes post-processed probe data of traffic speeds at specific locations across six states for a period of two years. This raw data was processed to calculate individual traffic bottlenecks and produce a couple of key data points associated with it. A bottleneck is simply defined as a 60% or more reduction in the normal speed of a particular location for a period of 5 minutes or more. The key data points from these derived data are a maximum length in miles, the bottleneck duration in time, and the number of occurrences that a particular event occurred. From this, another derived metric is created, called impact factor, displayed below.

Formula for Impact factor: Maximum length x bottleneck duration x number of occurrences (will be a graphic)

With these metrics, we averaged their values per month per location. In total, we produced a total of 1651 locations across the six states with these statistics per month over two years.

3 Design Motivation

There are several reasons why we chose a treemap to be the focal point of our application. The treemap, first developed by Ben Shneiderman (Shneiderman and Wattenberg, 2001), provides a simple yet powerful way for comparing nodes enclosed in a hierarchy. By design it recursively subdivides area into rectangles. This fits the traffic location bottleneck data very well because every location is contained within a larger geographic boundary (a location is part of a road, which is part of a county, which is part of a state). Utilizing the three to four associated data metrics and applying them to the treemap, we felt it would provide a great way for planners to identify outliers and anomalies easily, as well as view these sets of statistics in a compact, holistic way, something that the treemap also does very well.

We took inspiration from several other treemap implementations, such as Smart Monkeys Map of the Market, combining the breadth view we desired with an interactive capability to zoom and filter as needed for in-depth data inspection. This also seemed to be a natural fit for our data and use case, as it provided interesting ways that planners could zoom and explore for interesting trends. We combined this with a checkbox location filter to remove specific roads or counties that may be skewing system level comparative results, a key challenge due to the loss of fidelity in working with aggregated data averages. (Blanch and Lecolinet, 2007)

4 Related Work

The past few years have seen an increasing number of applications devoted to visualizing the vastly growing amount of traffic sensor data. The CATT Lab at the University of Maryland, College Park has developed a suite of tools to identify major bottlenecks, report on travel time reliability, and display other congestion conditions and traffic incidents. Their congestion s-
can tool provides a useful heatmap allowing the exploration of the rise and fall of congested conditions on a stretch of road. Fervor (Shneiderman and Plaisant, 2004) provides four integrated visualizations for exploring traffic data, including interactive maps, histograms, two-dimensional plots, and parallel coordinates.

However, most of these tools focus on visualizing real-time data, and do not provide features allowing the visualization of trends over an extended period of time. At this time, we are currently only aware of work being done at the Federal Highway Administration called the Highway Performance Monitoring System (HPMS), although we were not able to view their work at the time of this paper.

5 Traffic Trender Design

Our Traffic-Trender is designed to explore trends in traffic bottlenecks over time based on different zoom levels. Our tool consists of three major components, namely tree map, line charts and filter control panel, as show in the figure.

Since our visualization is web-based, we implemented the backend and the frontend, each with different techniques. Our backend is implemented with MySQL database and Java programming language, and our frontend interface is implemented with D3/JavaScript. The reason we make our visualization tool based on web is that we would like to make it platform independent and make it easier to use. We host our visualization tool on Amazon cloud service, and users only need to type in our http address\(^1\) in their web browser to start using it.

We will describe the implementation and design features of our three main components in the follow subsections.

5.1 TreeMap

Our treemap visualization is not only useful for analyzing the correlation among three important attributes (impact factor, duration and length) of our traffic data but also very powerful for refining and selecting the needed traffic data after filtering. Our content-based treemap visualization is two-dimensional, and rectangles in our treemap visualization represents individual specific locations in one road, and all rectangles are grouped together according to their geographic information, and they are firstly grouped based on which road they are located, then the county and the state. In Figure 2, we show our treemap in the county level under the state of Maryland, all counties within Maryland are shown and rectangles representing the specific locations within Maryland are grouped together based on their county information.

Our treemap visualization can be easily customized by users, and we provide three options for users to specify the size and the color attribute of each rectangle in our treemap. For example, if a user want to understand the correlation between the length and the maximum duration of our traffic bottleneck data, they can select the size of the rectangles to be the length and the color to be the duration in the treemap control panel.

By providing such functionality for users, they can easily explore the data with different rectangle size, and color variables, and they can discover the correlations among three important attributes in our dataset.

We also provide the functionality of changing the specific data selection range and the zoom level for users in our treemap. Due to the reason that our dataset is hierarchical as described in the previous section, we have four zoom levels in our treemap accordingly. All four levels (state, county, road and individual location) are shown in Figure 2, 4, 3, 5. By default, our treemap is on the state level (as shown in Figure 3), where all states are shown. By just a simple mouse clicking, our users can navigate into a certain state if they click on a specific state rectangle. The same applies when the treemap is on the county level (Figure 2) and they can

\(^1\)http://bottleneck.traffic-trender.com/traffic-trender/trender.html
then zoom in into road level (Figure 4) and so on. Whenever the user changes the zoom level, the treemap can automatically update itself so that users are able to focus only on the demanded locations.

The ability to change the zoom level of our dataset enables users to visually emphasize the traffic bottleneck locations that are within a specific range, which could be inside a state, or county and others. In addition, such easiness of changing zoom levels by simple mouse clicking can greatly improve the effectiveness of our treemap visualization.

5.2 Line Chart

Our second major component is the line charts. We provide two line charts for users to focus on specific locations or aggregated information among individual locations, like treemap both of our line charts can be customized as well based on the three attributes of our data, namely impact factor, length and duration. The following sections describe the two line charts.

5.2.1 Top-10 Location Line Chart

Based on current zoom level of the treemap, and users’ selections in the filter control panel, our top-10 location line chart can automatically display, as the name suggests, the top individual
locations in the selected range over time by selecting the traffic bottleneck locations and ranking them in order. The x-axis shows the time over the last two years, and the y-axis shows one of the three user-specified attributes (impact factor, length or duration) based on which the line chart do the ranking.

We designed our line chart so that it simply follows the selection of treemap and users do not need to make extra movements in order to use this visualization, for example, when users click on the treemap and zoom from state level into county level, our line chart will automatically change its scope and recalculate the new top-10 locations. We use different colors to represent each individual lines, and if users are interested in details about each location, they can move their mouse to specific lines, details of each road name are shown upper side of this visualization.

5.2.2 Aggregated Line Chart

The aggregated line chart is provided to answer the questions, such as what is the difference over time between states MD, VA and DE, or the difference between Howard and Prince George counties. The aggregated line chart is based on the zoom level, and show only the aggregated lower level aggregated information, for example if the zoom level is at the state level and it is under state MD, then only the counties under MD will be shown in the aggregated line chart where each line represents a county. For another example, if the current zoom level is at the county level, then only the aggregated road information is shown where each line represents a road (not individual locations). The difference between this visualization and our top-10 location line chart is that, the top-10 location chart always displays each individual locations while this visualization can provide higher level information.

Besides the above difference, all other visual features stay exactly the same as the top-10 location line chart, this line chart follows the zoom level selection of treemap and users do not need to make extra movements to use it, and individual lines are represented in different colors, details can be retrieved once users move their mouse to specific lines.

5.2.3 Filter Control Panel

Our third major component is the filter control panel. As the name suggests, it can help...
the users to select what they want and display them in the treemap and line chart. We organize the filter content in a hierarchical tree, the structure starts from the state, then county, and finally down to road. This list is inclusive, users can make selections and click the ‘apply’ button, the treemap and line chart visualizations will change accordingly.

The filter selections along with the zoom level selection are the two data manipulation mechanisms that we provide for users to explore our traffic bottleneck data set.

6 Evaluation

In order to assess the effectiveness of our Traffic Data analysis tool, we designed and performed an experimental user study. The evaluation scenario best matching our purposes is the User Experience (UE) test case (Lam et al.,). The goal of our experiment was (1) to observe the user reaction to the visualization and interactive features offered by Traffic Trender, (2) to indentify the strengths and weaknesses of Traffic Trender and (3) to get suggestions for future improvements.

6.1 Experiment Design

6.1.1 Test subject

Our test population consisted of two graduate students in Computer Science (cs) and six domain experts from the center for advanced transportation technology (CATT). Both group-
s used Traffic Trender to perform tasks on the same traffic data set provided by Michael Pack, Director of CATT Lab.

6.1.2 Testing protocol

The testing protocol was as the following: first, the user received a 2-minute general introduction of our software and the dataset, followed by a 3-minute demo of the software. The user then asked any questions he or she might have. Then the user was asked to perform 6 tasks within 15 minutes. While interacting with the system, the users were encouraged to think out loud. After finished the tasks, the user then filled out a post-experiment questionnaires.

The entire experiment was recorded in both screen capture video and audio.

6.1.3 Tasks

The 6 timed tasks are shown below:

T1 Use the TreeMap visualization to represent size with Impact Factor, represent color with Duration, show all individual locations. Which state has the worst bottleneck situation (i.e. the highest Impact Factor) during the year 2010 and 2011?

T2 Use the TreeMap visualization to represent size with Duration, represent color with Impact Factor, zoom in the TreeMap and show locations only in MD. Which location in MD has the worst bottleneck situation (i.e. the highest Impact Factor) during the year 2010 and 2011?

T3 Use the TreeMap visualization to represent size with Maximum Length, represent color with Duration, use the filter panel to show locations only in State ‘SC’ and County ‘GREENVILLE’. Which location in GREENVILLE, SC has the bottleneck with the longest duration during the year 2010 and 2011?

T4 Use the Top 10 Locations LineChart visualization to show the top 10 locations based on Impact Factor for all locations in State ‘VA’. Among these top 10 locations, which location has the bottleneck with the highest impact factor in Aug. 2011?

T5 Use the Top 10 Locations LineChart visualization to show the top 10 locations based on Duration for all locations inside ‘Rich-

mond, VA’ and with Road_name ‘I-195’. Among these top 10 locations, which location has the bottleneck with the longest duration between Apr. 2011 and Dec. 2011?
6. Use the TreeMap to zoom in to ‘Frederick, MD’, set the y-axis of the Aggregated Boundaries LineChart to be Impact Factor. Between Jan. 2010 and Dec. 2011, are certain roads getting better or worse over time?

6.1.4 Post Experiment Questionnaires

In this phase, the users filled out a questionnaire with 8 closed-ended questions and 4 open-ended questions. The first 8 questions were on a 9-point Likert scale with 9 being positive. These questions were about the learnability, interface design, navigation and responsiveness. The 4 open-ended questions were used to identify useful features that Traffic Trender had/missed.

Part 1

Q1 How do you rate your overall performance on the tasks given?

Q2 Did you find the interface simple?

Q3 Do you think the interface is easy to navigate?

Q4 Do you think the interface responds quickly?

Q5.1 Concerns your experience with the visual display elements: How was your experience with the Screen resolution?

Q5.2 How was your experience with the Display colors of the visual display?

Q5.3 How was your experience with the Scrolling and Other Feedback of the visual display?

Q6 Did you find the TreeMap Visualization helpful?

Q7 Did you find the two LineChart Visualizations helpful?

Q8 Did you find the Filtering panel helpful?

Part 2

Q1 Is the tool understandable and can it be learned?

Q2 What features are seen as the most useful?

Q3 What features are missing?

Q4 How can features be reworked to improve the supported work processes?

6.2 Results

(We have done 4 usability tests and 4 more will be done on Friday, Nov. 30, 2012.) Overall, all 4 participants appeared to perform well and finished all 6 tasks within 10 minutes.

Task 1 seemed straightforward to all participants. 3 out of 4 participants answered the question correctly. The 4th participant (p4) forgot to click the apply button after changing the setting of size for Treemap, so he got a wrong answer. Also p2 was confused about the meaning of the color of Treemap (i.e. which color represented high value?)

For Task 2, 3 out of 4 participants answered the question correctly. p2 forgot to click the apply button after changing the setting for Treemap from “duration for color” to “impact factor for color”, and this caused the wrong answer.

For Task 3, all 4 participants got the correct answer but 3 participants failed to use the filter menu to unselect efficiently.

For Task 4, all 4 participants answered the question correctly but they all complained about the crowded labels in the line chart and 2 participants complained about the lack of zoom-in for the x-axis.

For Task 5, all 4 participants got the correct answer. 2 participants used the filter menu to filter out most of the unwanted locations, while the other 2 used the Treemap to zoom in to the desired region.

For Task 6, all 4 participants answered the question correctly. They seemed to have no problem switching between the two line charts.
6.3 Feedback based on Close-Ended Questions

For the 6 closed-ended questions, the results were as the following:

For Q1 (overall performance), the participants responded 7, 7, 6 and 8. This showed that all participants were fine with their overall performance on the tasks given.

For Q2 (UI), the participants responded 5, 9, 6 and 7. Students from CS found this UI simple while Traffic domain experts found it not simple.

For Q3 (Navigation), the participants responded 6, 8, 6 and 8.

For Q4 (Responsiveness), the participants responded 6, 8, 5 and 7.

For Q5.1 (Screen resolution), the participants responded 4, 6, 6 and 9. P1 wanted a larger display of the visualization.

For Q5.2 (Color), the participants responded 7, 8, 7 and 7. So all participants seemed to like the colorful display, especially the Treemap visualization.

For Q5.3 (Scrolling), the participants responded 7, 7, 8 and 9. So the Scrolling and other Feedback of the visual display were good.

For Q6 (Treemap helpfulness), the participants responded 8, 9, 9 and 8. All 4 participants liked the Treemap visualization very much.

For Q7 (Line chart helpfulness), the participants responded 5, 7, 7 and 7. P1 complained that the line chart was “Too busy”.

For Q8 (Filter menu helpfulness), the participants responded 7, 6, 9 and 5. P4 had problem with the select/unselect of the filter menu, and p4 also forgot the click the “apply” button of the filter menu a few time because when the filter menu was collapsed, the “apply” button was far away from the selector.

6.4 Feedback based on Open-Ended Questions

From the 4 open-ended questions, we got the following feedback:

For Q1 (Tool understandable), all 4 participants answered “yes”. P4 said “could probably teach myself with a bit more time.”

For Q2 (most useful feature), all 4 participants answered “Treemap” as the most useful. P1 liked the ability to change Treemap primary/secondary attribute, and P1 also like the Time graphs (Line Chart).

For Q3 (missing features), “zooming on line graphs” were mentioned twice, “un-clicking all for the filter menu” were mentioned twice. There were other answers such as “explanation of impact factor”, “explanation of Treemap color”, “showing the direction of the road”, and “one more level in the Treemap - Region”.

For Q4 (features need to be reworked), 3 out of 4 participants suggested the apply button. 2 mentioned “the label of the x-axis in Line Chart”. Other things suggested were Option to order Treemap alphabetically”, “cross ref locations to a map”, “give the order of the Top 10 locations in the line chart”, “change the name of the Aggregated Boundaries to something else”.

6.5 Key Evaluation Insights and Changes

All of the participants in the user evaluation study reacted favorably to the overall performance of Traffic Trender and provided valuable feedbacks. Most of the suggestions are within the scope of our tool development and we have already made some changes after the first round of usability tests. For example, we added “highlight” on the Line Chart when the mouse is hovering over, and we are working on the labeling of the Line Chart.

Other features we plan to rework or add in are including but not limited to the following:

- The three apply buttons on the UI. We will make these three button work together, maybe use just one button.

- The ability to zoom in the x-axis of the Line Chart.
- Add one more level in the Treemap (Region) because later on our tool might deal with larger set of data for more than 7 states, a Region level between country and states will be helpful. Provide a help menu to provide information.

- Rework the “select/unselect” function on the filter menu. Right now this feature is functional but users seem to have problem finding it. We need to make it more intuitive.

- Display the order of the lines in the Line Chart. This could be added as Details on demand.

Some other features are not likely to be implemented in this project, but are worth exploring in the future. For example, by integrating other dataset in our visualization, we can answer the following question: “Are there other factors that might be affecting the bottlenecks? (weather, incidents, construction, etc.)” This could be really helpful.

7 Conclusions and Further Directions

Our goal was to create a systematic level traffic bottleneck viewer to uniquely assist planners in identifying insights. In our infoviz application, we utilized a zoomable treemap, a set of line charts, and a rich set of filters to assist the users to explore their datasets.

Based on the results and feedbacks of the user study, we gained valuable insights about the design and use of our application, and we draw the conclusion that users approved of Traffic Trender. We also learned that there were flaws in our interface designs, and some features need to be reworked. All of the comments from the users will be taken into consideration in further development of Traffic Trender.

Acknowledgments

We would like to thank Dr. Ben Shneiderman for his valuable support and guidance throughout the whole process of our work. We would also like to thank Michael Pack for his insights and guidance, providing data, feedback on designs and helping us connect with other domain experts.

References

Heidi Lam, Enrico Bertini, Petra Isenberg, Catherine Plaisant, Sheelagh Carpendale, Heidi Lam, Enrico Bertini, Petra Isenberg, Catherine Plaisant, and Sheelagh Carpendale. Seven guiding scenarios for information visualization evaluation.
