Privacy-Aware Malware Detection

Department of Computer Science
University of Maryland

Sanghyun Hong, Mingfei Gao, Parsa Saadatpanah, Andrew James Pachulski
Overview

- **Stealing Credentials**
 - Customers can sell Virtual Machine (VM) images via a market place
 - The VM images includes open-source or 3rd-party software in themselves
 - Attacker can create VM images that includes infected (malicious) software
Overview

- **Denial of Services (DoS) attacks**
 - Cloud service providers provide their toolstacks inside of their VM images.
 - The toolstacks can create/duplicate/remove/store VMs by command lines.
 - Attackers can use malwares in VMs to do DoS attacks by using these toolstacks.
Motivation

● **Malware Detection**
 ○ Malware detection techniques can help to find out infected VMs
 ○ Privacy issue: current detection methods need semantic information in VMs
 ○ Can we do malware detection without accessing to virtual machines?
How to Solve

- Malware Detection Framework

Virtualization Indicators

- Precise performance counters
- Branch Trace Stores (BTS)
- Last branch report
- Hardware events
 - Retired instructions
 - Retired branch instructions
 - L1 cache stores
 - I/O operations
 - Function return addresses
- Additional indicators
 - Hyper/system calls in Dom0
 - Calltrace of binaries in Dom0

A Detection Framework on Xen System Architecture
Why this is awesome!

- **Limit**: Prior works need introspection of VMs, which potentially leaks users’ credentials
- **Limit**: Other methods require to attach custom, extra hardwares to the infrastructure
- We’re able to address these issues without *jeopardizing* the users’ privacy, or *touching* the infrastructure
Q & A

Department of Computer Science
University of Maryland

Sanghyun Hong, Mingfei Gao, Parsa Saadatpanah, Andrew James Pachulski
{shhong, parsa, mgao, ajp}@cs.umd.edu