
The Dropper Effect: Insights into Malware Distribution
with Downloader Graph Analytics

Mingfei Gao∗ Doowon Kim† Tongyang Li‡ Virinchi Srinivas§

February 22, 2016

Introduction

Malicious software (malware) destroys and steals access to users’ private computer systems,
which can lead to breach of sensitive personal information. Malware can be categorized
as virus, Trojan horses, Rootkits, Backdoors, Evasion, etc. It has been rapidly growing,
spreading and infecting computer systems; it continues to be an active threat. Currently,
more than 200 million unique variants of malware exist. Anti-virus is a software tool that
is used to protect against attacks from malwares. Lot of work has been dedicated to de-
tecting malwares which broadly focused on better understanding the properties of malwares
such as malwares’ network behaviors. However, this approach is not always able to help
detecting new malwares because the malwares continuously keep evolving by re-packing and
obfuscating themselves. Therefore, a new approach, called content-agnostic techniques, has
come into the limelight. Content agnostic techniques do not solely rely on the content of
various files (benign/malware) and stresses for the need to focus on the relationship between
these different files (downloaders). The need for using content agnostic techniques can be
motivated with an example that follows.

Executable files can download a variety of auxiliary malwares, called payloads, which
are the main sources of malware distribution. For example, assume that a user downloads
Chrome (web browser). Although the web browser is benign, it can download malicious
programs. Moreover, the malicious programs downloads supplementary malwares from the
Internet. The detection of this kind of the attack is not trivial because downloading software
from the Internet is not a clue of malicious intents. However, the downloader graphs that
can be generated by detecting the relationships among downloaded executable files on a host
can provide a better mechanism to understand and capture relationship between different
files and droppers during the software download process.

∗mingfeigaobupt@gmail.com
†doowon@outlook.com
‡tongyang@cs.umd.edu
§virinchimnm@gmail.com

1



An example of a downloader graph is shown in Figure 1. From this figure, we can see
the basic idea of how the malicious nodes might distribute in the downloader graph. The
Internet searching starts at node A which represents a benign Web browser. The node A
further downloaded two files, i.e. nodes B and D. We don’t know if B or D is malicious
because we do not have the labels (benign or malicious) of these Nodes. Then Node B down-
loaded nodes C and F which are labeled as malwares. Since node B is connected directly
to known malwares, we can suggest that node B and all the nodes reachable from node B
in the graph are probabily involved in malware distribution. For conciseness, these kinds of
malware distributions are called influence graphs as shown in the figure. If we could identify
the properties of benign and malicious influence graphs in advance, we would have be able
to detect malware and abort it from dropping malicious softwares in the machine.

Figure 1: Example of a real downloader graph and the influence graphs of two selected
downloaders [1]

Methodology and Results

This work detects malware downloads by graph analytics. To be more specific, influence
graph is considered, a directed graph defined for each individual downloader on a given host
machine, where a node represents a downloaded file and an edge represents a download on
the corresponding host machine. Interestingly, malicious influence graphs have many distinct
properties compared to those benign ones as shown in Figure 2: their diameters are larger,
their growth rates are slower, they tend to downed fewer files per domain, and their URL
access are quite different from benign ones. Based on these features, a malware detection
system is built by employing supervised machine learning techniques to separate malicious
and benign influence graphs. In other words, this work uses graph abstraction to analyze
the relationship between different downloaders and other executables they download using
downloader graphs, and the method captures relation between different malicious families
and increases system performance in terms of detecting malware.

2



Benign
Malicious

%
 o

f I
nfl

ue
nc

e 
G

ra
ph

s

0.01

1.00

100.00

Diameter
2 3 4 5

%
 o

f I
nfl

ue
nc

e 
gr

ap
h 

Histogram bucket size = 16000 minutes

Malicious
Benign

0.01

1.00

100.00

Rate of Influence Graph growth (minutes/nodes)
0 1 2 3 4×105

%
 o

f I
nfl

ue
nc

e 
G

ra
ph

s

Benign
Malicious

Mostly Adware

Histogram Bucket width = 100

0

20

40

Average #distinct portals accessing an URL
0 500 1000 1500

Malicious
Benign

%
 o

f I
nfl

ue
nc

e 
G

ra
ph

s

Windows Update

Histogram Bucket width = 10

Fake AVs and more

0

20

40

Average #distinct portals accessing an URL - Zoomed In
0 50 100 150 200 250

%
 o

f I
nfl

ue
nc

e 
G

ra
ph

s

Malicious
Benign

Histogram Bucket width = 500

DivXInstaller.exe
Apple software update

Mostly Adware

Gabpath Adware

3+ Adware

0

20

40

Average #Files per URL for Infleunce Graphs
0 5000 10000

Figure 4: (a) Distribution of influence graph diameter (b) Growth rate of influence graphs (expressed as the average inter-download
time) (c) Distribution of the average number distinct portals accessing the domains of an influence graph (d) Zoomed in version of
the previous plot (e) Distribution of the number of executables downloaded from the source domains of an influence graph.

vation is that benign downloaders also exhibit diverse behaviors.
For example, the influence graphs of Apple Software Update are
also in the 4000–5000 histogram bucket, while DivXInstaller’s in-
fluence graphs download around 10000 files per domain.

5. MALWARE CLASSIFICATION
While in the previous section we identify several features that

indicate malicious download activity, none of these features, ta-
ken individually, are sufficient for detecting most of the malware in
our data set. We therefore build a malware detection system that
employs supervised machine learning techniques for automatically
selecting the best combination of features to separate the malicious
and benign influence graphs. Specifically, we train a random-forest
classifier using influence graphs labeled as described in Section 3.4;
unlike in Section 4, we employ malicious graphs that correspond to
both known and unknown droppers, as this data set is more repre-
sentative of the state of malicious downloaders in the wild. We test
our classifier using both internal (cross-fold validation and early
detection) and external (VirusTotal results for some of the unlabe-
led samples predicted to be malicious) performance metrics.

5.1 Handling Data Skew
The ground data consists of 274,126 malicious and 14,918,097

benign influence graphs. Training a classifier on such a skewed data
set may bias the model toward the abundant class (the benign IGs)
and may focus on tuning the unimportant features, i.e., the ones
that do not contribute to the classification but rather model noise in
the dataset. We address this problem through stratified sampling:
we sample the abundant and rare classes separately to select appro-
ximately equal numbers of IGs for the training set. In practice, we
do not need to exclude any examples from the rare class, and some
examples from the abundant class can be identified easily and filte-
red to reduce the variability within that class. We therefore filter out
all the Web browsers (identified as described in Section 4.2) from
the benign set of IGs, as the set of files they download is not predic-
table and includes both benign and malicious executables. We then
keep all the malicious graphs and we downsample the remaining
set of benign graphs (sampling uniformly at random). We manu-
ally examined the properties of several random samples created in

this manner and observed that they closely match the properties of
the abundant class. Our balanced training set consists of 43,668
malicious and 44,546 benign influence graphs.

5.2 Feature Engineering
Table 3 provides the features that we compute based on the pro-

perties of the influence graphs. We organize the features into five
semantic categories: internal dynamics, life cycle, properties of
downloaders, properties of domains, and globally aggregated be-
havior. For each feature, we also provide the high level intuition
for why we expect it would separate malicious and benign graphs.

Depending on how we compute the features, we distinguish two
feature types. Local features (LF) use information contained in the
influence graph. Global features (GF) are also computed for each
influence graph; however, they use properties aggregated across all
the hosts. An example of a GF is the Average Distinct File Affinity,
illustrated in Figure 4(e), which reflects the tendency of an influence
graph to download files from domains that are known to serve a
large number of distinct files.

We quantify the worth of each feature in terms from distingu-
ishing benign and malicious influence graphs using the gain ratio6

with 10-fold cross validation. We select this metric because it is
known to be more robust than alternative metrics, such as the infor-
mation gain or the Gini index, when the features differ greatly with
respect to their range [21]. Table 4 shows a summary of the top-10
features in descending order of their gain ratio. The most useful fe-
atures are the average file prevalence and the features illustrated in
Figures 4(c)–(e). We emphasize that, because the features are com-
puted per influence graph, the power of these global features helps
classify all the downloaders in the graph. For example, a dropper
that normally evades detection because it is present on many hosts,
but that always downloads unique files, will likely be classified as
malicious because of the low average prevalence of the files in its
influence graph.

5.3 Choosing the Classifier
Our data set presents several challenges for supervised machine

learning. Some classification algorithms work best on data sets
6
http://www.csee.wvu.edu/~timm/cs591o/old/Lecture6.html

Figure 2: Malicious influence graph vs benign influence graph [1]

Experimentally, download activities were inferred on 5 million end-hosts using data on a
platform for data intensive experiments in cyber security and a large number of the data were
known as malicious or benign files according to records from two libraries. Experiments are
done on 19 million downloader graphs from these 5 million real hosts and the result shows
that the proposed classifier achieves a 96.0% true positive rate, with a 1.0% false positive
rate.

Future Work

Given this being the first work in this direction, one could extend this system to identify
malicious campaigns in the wild. We could use similar graph abstractions to understand the
relation between downloaders, executables and domains they access and how they actively
coexist in a given time interval. The system proposed in this work, considers static data
setting and an obvious extension would be to build a malware detection system when data
is presented in a streamed fashion. This would give rise to a complete end-to-end malware
detection system.

References

[1] Kwon, Bum Jun, et al. ”The Dropper Effect: Insights into Malware Distribution with
Downloader Graph Analytics.” Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2015.

[2] Mavrommatis, Niels Provos Panayiotis, and Moheeb Abu Rajab Fabian Monrose. ”All
your iframes point to us.” USENIX Security Symposium. 2008.

[3] Zou, Cliff C., and Ryan Cunningham. ”Honeypot-aware advanced botnet construction
and maintenance.” Dependable Systems and Networks, 2006. DSN 2006. International
Conference on. IEEE, 2006.

3


