The Dropper Effect: Insights into Malware Distribution
with Downloader Graph Analytics

Mingfei Gao* Doowon Kim' Tongyang Li* Virinchi Srinivas®
February 22, 2016

Introduction

Malicious software (malware) destroys and steals access to users’ private computer systems,
which can lead to breach of sensitive personal information. Malware can be categorized
as virus, Trojan horses, Rootkits, Backdoors, Evasion, etc. It has been rapidly growing,
spreading and infecting computer systems; it continues to be an active threat. Currently,
more than 200 million unique variants of malware exist. Anti-virus is a software tool that
is used to protect against attacks from malwares. Lot of work has been dedicated to de-
tecting malwares which broadly focused on better understanding the properties of malwares
such as malwares’ network behaviors. However, this approach is not always able to help
detecting new malwares because the malwares continuously keep evolving by re-packing and
obfuscating themselves. Therefore, a new approach, called content-agnostic techniques, has
come into the limelight. Content agnostic techniques do not solely rely on the content of
various files (benign/malware) and stresses for the need to focus on the relationship between
these different files (downloaders). The need for using content agnostic techniques can be
motivated with an example that follows.

Executable files can download a variety of auxiliary malwares, called payloads, which
are the main sources of malware distribution. For example, assume that a user downloads
Chrome (web browser). Although the web browser is benign, it can download malicious
programs. Moreover, the malicious programs downloads supplementary malwares from the
Internet. The detection of this kind of the attack is not trivial because downloading software
from the Internet is not a clue of malicious intents. However, the downloader graphs that
can be generated by detecting the relationships among downloaded executable files on a host
can provide a better mechanism to understand and capture relationship between different
files and droppers during the software download process.

*mingfeigaobupt@gmail.com
fdoowon@outlook.com
ftongyang@cs.umd.edu
$virinchimnm@gmail.com

An example of a downloader graph is shown in Figure 1. From this figure, we can see
the basic idea of how the malicious nodes might distribute in the downloader graph. The
Internet searching starts at node A which represents a benign Web browser. The node A
further downloaded two files, i.e. nodes B and D. We don’t know if B or D is malicious
because we do not have the labels (benign or malicious) of these Nodes. Then Node B down-
loaded nodes C and F which are labeled as malwares. Since node B is connected directly
to known malwares, we can suggest that node B and all the nodes reachable from node B
in the graph are probabily involved in malware distribution. For conciseness, these kinds of
malware distributions are called influence graphs as shown in the figure. If we could identify
the properties of benign and malicious influence graphs in advance, we would have be able
to detect malware and abort it from dropping malicious softwares in the machine.

IExplore.exe

secure.2-pn-installer.com
c-oTTTTTTTSs - ----__ IG(B)
chrome_setup.exe \\\

secure.2-pn-installer.com

,
Chmme—set“p[z]'exe@ d3rmfxfj03.cloudfront.net '\

“---.___ IG(C) :
sizlsearch.ad ~~-_ '

® v install-cdn.sizlsearch.net "\
\ |
i

i \
t \
\ chrome_setup[1].exe setup.exe
\ s 1 !
,--~" /install-cdn.sizisearch.net | |
!

S . . ;or
’ @ sizlsearchuninstall.exe ,/ /
\ R

O Benign O Malicious Q nlabeled

Figure 1: Example of a real downloader graph and the influence graphs of two selected
downloaders [1]

Methodology and Results

This work detects malware downloads by graph analytics. To be more specific, influence
graph is considered, a directed graph defined for each individual downloader on a given host
machine, where a node represents a downloaded file and an edge represents a download on
the corresponding host machine. Interestingly, malicious influence graphs have many distinct
properties compared to those benign ones as shown in Figure 2: their diameters are larger,
their growth rates are slower, they tend to downed fewer files per domain, and their URL
access are quite different from benign ones. Based on these features, a malware detection
system is built by employing supervised machine learning techniques to separate malicious
and benign influence graphs. In other words, this work uses graph abstraction to analyze
the relationship between different downloaders and other executables they download using
downloader graphs, and the method captures relation between different malicious families
and increases system performance in terms of detecting malware.

100.00 i 100.00 + 4 Histogram. bucket size .= 16000 minu(es‘ Histogram Bucket width = 100

Malicious /
Mostly Adware

40
1al Malicious

s.i Benign

i
A

1.00+
20+

% of Influence Graphs
O
L T A
% of Influence Graphs

OISO IIL

% of Influence graph

5
\
\
\

0.01

©

3 4 1 2 4x10° 0 500 1000 1500
Diameter Rate of Influence Graph growth (minutes/nodes) Average #distinct portals accessing an URL
40 Histogram Bucket width = 500

Histogram Bucket width = 10 Mostly Adware N

Malicious

40+

3+ Adware Benign

B
5
i
H
H
H
£
j/ Fake AVs and more
Apple software update

% of Influence Graphs

% of Influence Graphs

H
20 i :
E l i s Windows Update DivXInstaller.exe
IE I H « Gabpath Adware =
£ £ Y i i
0| 8E H " . . " 7 T ! 7
0 50 100 150 200 250 000 10000
Average #distinct portals accessing an URL - Zoomed In Average #Files per URL for Infleunce Graphs

Figure 2: Malicious influence graph vs benign influence graph [1]

Experimentally, download activities were inferred on 5 million end-hosts using data on a
platform for data intensive experiments in cyber security and a large number of the data were
known as malicious or benign files according to records from two libraries. Experiments are
done on 19 million downloader graphs from these 5 million real hosts and the result shows
that the proposed classifier achieves a 96.0% true positive rate, with a 1.0% false positive
rate.

Future Work

Given this being the first work in this direction, one could extend this system to identify
malicious campaigns in the wild. We could use similar graph abstractions to understand the
relation between downloaders, executables and domains they access and how they actively
coexist in a given time interval. The system proposed in this work, considers static data
setting and an obvious extension would be to build a malware detection system when data
is presented in a streamed fashion. This would give rise to a complete end-to-end malware
detection system.

References

[1] Kwon, Bum Jun, et al. "The Dropper Effect: Insights into Malware Distribution with
Downloader Graph Analytics.” Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2015.

[2] Mavrommatis, Niels Provos Panayiotis, and Moheeb Abu Rajab Fabian Monrose. ” All
your iframes point to us.” USENIX Security Symposium. 2008.

[3] Zou, Cliff C., and Ryan Cunningham. ”Honeypot-aware advanced botnet construction
and maintenance.” Dependable Systems and Networks, 2006. DSN 2006. International

Conference on. IEEE, 2006.

