Changes

1,117 bytes added ,  16:23, 6 March 2012
no edit summary
Line 53: Line 53:  
| March 8
 
| March 8
 
| Jie Ni
 
| Jie Ni
|  
+
| Example-Driven Manifold Priors for Image Deconvolution
 
|-
 
|-
 
| March 15
 
| March 15
Line 117: Line 117:     
In many real-world scenarios, we must make judgments in the presence of computational constraints. One common computational constraint arises when the features used to make a judgment each have differing acquisition costs, but there is a fixed total budget for a set of judgments. Particularly when there are a large number of classifications that must be made in a real-time, an intelligent strategy for optimizing accuracy versus computational costs is essential. E-mail classification is an area where accurate and timely results require such a trade-off. We identify two scenarios where intelligent feature acquisition can improve classifier performance. In granular classification we seek to classify e-mails with increasingly specific labels structured in a hierarchy, where each level of the hierarchy requires a different trade-off between cost and accuracy. In load-sensitive classification, we classify a set of instances within an arbitrary total budget for acquiring features. Our method, Adaptive Classifier Cascades (ACC), designs a policy to combine a series of base classifiers with increasing computational costs given a desired trade-off between cost and accuracy. Using this method, we learn a relationship between feature costs and label hierarchies, for granular classification and cost budgets, for load-sensitive classification. We evaluate our method on real-world e-mail datasets with realistic estimates of feature acquisition cost, and we demonstrate superior results when compared to baseline classifiers that do not have a granular, cost-sensitive feature acquisition policy.
 
In many real-world scenarios, we must make judgments in the presence of computational constraints. One common computational constraint arises when the features used to make a judgment each have differing acquisition costs, but there is a fixed total budget for a set of judgments. Particularly when there are a large number of classifications that must be made in a real-time, an intelligent strategy for optimizing accuracy versus computational costs is essential. E-mail classification is an area where accurate and timely results require such a trade-off. We identify two scenarios where intelligent feature acquisition can improve classifier performance. In granular classification we seek to classify e-mails with increasingly specific labels structured in a hierarchy, where each level of the hierarchy requires a different trade-off between cost and accuracy. In load-sensitive classification, we classify a set of instances within an arbitrary total budget for acquiring features. Our method, Adaptive Classifier Cascades (ACC), designs a policy to combine a series of base classifiers with increasing computational costs given a desired trade-off between cost and accuracy. Using this method, we learn a relationship between feature costs and label hierarchies, for granular classification and cost budgets, for load-sensitive classification. We evaluate our method on real-world e-mail datasets with realistic estimates of feature acquisition cost, and we demonstrate superior results when compared to baseline classifiers that do not have a granular, cost-sensitive feature acquisition policy.
 +
 +
===Example-Driven Manifold Priors for Image Deconvolution===
 +
Speaker: Jie Ni -- Date: March 8, 2012
 +
 +
Image restoration methods that exploit prior information about images to be estimated have been extensively studied, typically using the Bayesian framework. In this work, we consider the role of prior knowledge of the object class in the form of a patch manifold to address the deconvolution problem. Specifically, we incorporate unlabeled image data of the object class, say natural images, in the form of a patch-manifold prior for the object class. The manifold prior is implicitly estimated from the given unlabeled data. We show how the patch-manifold prior effectively exploits the available sample class data for regularizing the  econvolution problem. Furthermore, we derive a generalized cross-validation (GCV) function to automatically determine the regularization parameter at each iteration without explicitly knowing the noise variance. Extensive experiments show that this method performs better than many competitive image deconvolution methods.
     
199

edits