Changes

1,461 bytes added ,  23:46, 13 March 2012
no edit summary
Line 57: Line 57:  
| March 15
 
| March 15
 
| Huimin Guo
 
| Huimin Guo
|  
+
| Covariance Discriminative Learning: A Natural and Efficient Approach to Image Set Classification
 
|-
 
|-
 
| March 22
 
| March 22
Line 123: Line 123:     
Image restoration methods that exploit prior information about images to be estimated have been extensively studied, typically using the Bayesian framework. In this work, we consider the role of prior knowledge of the object class in the form of a patch manifold to address the deconvolution problem. Specifically, we incorporate unlabeled image data of the object class, say natural images, in the form of a patch-manifold prior for the object class. The manifold prior is implicitly estimated from the given unlabeled data. We show how the patch-manifold prior effectively exploits the available sample class data for regularizing the  econvolution problem. Furthermore, we derive a generalized cross-validation (GCV) function to automatically determine the regularization parameter at each iteration without explicitly knowing the noise variance. Extensive experiments show that this method performs better than many competitive image deconvolution methods.
 
Image restoration methods that exploit prior information about images to be estimated have been extensively studied, typically using the Bayesian framework. In this work, we consider the role of prior knowledge of the object class in the form of a patch manifold to address the deconvolution problem. Specifically, we incorporate unlabeled image data of the object class, say natural images, in the form of a patch-manifold prior for the object class. The manifold prior is implicitly estimated from the given unlabeled data. We show how the patch-manifold prior effectively exploits the available sample class data for regularizing the  econvolution problem. Furthermore, we derive a generalized cross-validation (GCV) function to automatically determine the regularization parameter at each iteration without explicitly knowing the noise variance. Extensive experiments show that this method performs better than many competitive image deconvolution methods.
 +
 +
===Covariance Discriminative Learning: A Natural and Efficient Approach to Image Set Classification===
 +
Speaker: [http://www.cs.umd.edu/~hmguo/ Huimin Guo] -- Date: March 15, 2012
 +
 +
We introduce a novel discriminative learning approach to image set classification by modeling the image set with its natural second order statistic, i.e., covariance matrix. Since nonsingular covariance matrices, a.k.a. symmetric positive definite (SPD) matrices, lie on a Riemannian manifold, classical learning algorithms cannot be directly utilized to classify points on the manifold. By exploring an efficient metric for the SPD matrices, i.e., Log-Euclidean Distance (LED), we derive a kernel function that explicitly maps the covariance matrix from the Riemannian manifold to a Euclidean space. With this explicit mapping, any learning method devoted to vector space can be exploited in either linear or kernel formulation. Linear Discriminant Analysis (LDA) and Partial Least Squares (PLS) are considered in this paper for their feasibility for our specific problem. The proposed method is evaluated on two tasks: face recognition and object categorization. Extensive experimental results show not only the superiority of our method over state-of-the-art ones in both accuracy and efficiency, but also its stability to two real challenges: noisy set data and varying set size.
     
199

edits