We propose a Predictable Dual-View Hashing (PDH) algorithm which embeds proximity of data samples in the original spaces. We create a cross-view hamming space with the ability to compare information from previously incomparable domains with a notion of 'predictability'. By performing comparative experimental analysis on two large datasets, PASCAL-Sentence and SUN-Attribute, we demonstrate the superiority of our method to the state-of-the-art dual-view binary code learning algorithms. We also propose an unsupervised domain adaptation method that exploits intrinsic compact structures of categories across different domains using binary attributes. Our method directly optimizes for classification in the target domain. The key insight is finding attributes that are discriminative across categories and predictable across domains. | We propose a Predictable Dual-View Hashing (PDH) algorithm which embeds proximity of data samples in the original spaces. We create a cross-view hamming space with the ability to compare information from previously incomparable domains with a notion of 'predictability'. By performing comparative experimental analysis on two large datasets, PASCAL-Sentence and SUN-Attribute, we demonstrate the superiority of our method to the state-of-the-art dual-view binary code learning algorithms. We also propose an unsupervised domain adaptation method that exploits intrinsic compact structures of categories across different domains using binary attributes. Our method directly optimizes for classification in the target domain. The key insight is finding attributes that are discriminative across categories and predictable across domains. |