Changes

1,360 bytes added ,  17:16, 10 April 2014
no edit summary
Line 71: Line 71:  
|-
 
|-
 
| April 10
 
| April 10
| Jing Jing
+
| Jingjing Zheng
| TBA
+
| Tag Taxonomy Aware Dictionary Learning for Region Tagging
 
|-
 
|-
 
| April 17
 
| April 17
Line 137: Line 137:     
Understanding affordance is a first step to a deeper understanding of the world, one in which a robot knows how an object and its parts can be used. To assist in everyday activities, robots must not only be able to recognize a tool, but also localize the its parts and identify how each part is used. We propose a preliminary approach to jointly localize and identify the function, or affordances, of a tool’s parts for objects from known or completely novel categories. We combine superpixel segmentation, feature learning, and conditional random fields to provide precise 3D predictions of functional parts that can be used directly by a robot to interact with the world. To investigate this problem, we introduce a new RGB-D Part Affordance Dataset consisting of 105 kitchen, workshop, and garden tools with pixel-level affordance labels for over 10,000 RGB-D images. We analyze the effectiveness of different feature types, and show that geometric features are most important for successful affordance identification. We demonstrate that by identifying the affordances of tools at the level of parts, we can generalize to novel object categories and identify the useful parts of never before seen tools.
 
Understanding affordance is a first step to a deeper understanding of the world, one in which a robot knows how an object and its parts can be used. To assist in everyday activities, robots must not only be able to recognize a tool, but also localize the its parts and identify how each part is used. We propose a preliminary approach to jointly localize and identify the function, or affordances, of a tool’s parts for objects from known or completely novel categories. We combine superpixel segmentation, feature learning, and conditional random fields to provide precise 3D predictions of functional parts that can be used directly by a robot to interact with the world. To investigate this problem, we introduce a new RGB-D Part Affordance Dataset consisting of 105 kitchen, workshop, and garden tools with pixel-level affordance labels for over 10,000 RGB-D images. We analyze the effectiveness of different feature types, and show that geometric features are most important for successful affordance identification. We demonstrate that by identifying the affordances of tools at the level of parts, we can generalize to novel object categories and identify the useful parts of never before seen tools.
 +
 +
===Tag Taxonomy Aware Dictionary Learning for Region Tagging===
 +
Speaker: [https://sites.google.com/site/jingjingzhengumd/ Jingjing Zheng] -- Date: April 10, 2014
 +
 +
Tags of image regions are often arranged in a hierarchical taxonomy based on their semantic meanings. Using the given tag taxonomy, we propose to jointly learn multi-layer hierarchical dictionaries and corresponding linear classifiers for region tagging. Specifically, we generate a node-specific dictionary for each tag node in the taxonomy, and then concatenate the node-specific dictionaries from each level to construct a level-specific dictionary. The hierarchical semantic structure among tags is preserved in the relationship among node-dictionaries. Simultaneously, the sparse codes obtained using the level-specific dictionaries are summed up as the final feature representation to design a linear classifier. Our approach not only makes use of sparse codes obtained from higher levels to help learn the classifiers for lower levels, but also encourages the tag nodes from lower levels that have the same parent tag node to implicitly share sparse codes obtained from higher levels. Experimental results using three benchmark datasets show that the proposed approach yields the best performance over recently proposed methods.
 +
    
==Past Semesters==
 
==Past Semesters==
199

edits