Difference between revisions of "CATS-Sep-20-2013"

From Theory
 
(3 intermediate revisions by the same user not shown)
Line 3: Line 3:
  
 
== Speaker ==
 
== Speaker ==
Maria Florina Balcan is an assistant professor in the School of Computer Science at Georgia Institute of Technology. Her main research interests are machine learning, computational aspects in economics and game theory, and algorithms. She is a recipient of the Carnegie Mellon University SCS Distinguished Dissertation Award , an NSF CAREER Award, a Microsoft Faculty Research Fellowship, and several paper awards at COLT. She is currently a board member of the International Machine Learning Society and a Program Committee co-chair for COLT 2014.
+
Yingyu Liang, School of Computer Science at Georgia Institute of Technology
  
 
== Abstract ==
 
== Abstract ==

Latest revision as of 02:29, 25 August 2013

Title[edit]

Clustering under Perturbation Resilience

Speaker[edit]

Yingyu Liang, School of Computer Science at Georgia Institute of Technology

Abstract[edit]

Recently, Bilu and Linial formalized an implicit assumption often made when choosing a clustering objective: that the optimum clustering to the objective should be preserved under small multiplicative perturbations to distances between points. They showed that for max-cut clustering it is possible to circumvent NP-hardness and obtain polynomial-time algorithms for instances resilient to large (factor O(\sqrt{n})) perturbations, and subsequently Awasthi et al. considered center-based objectives, giving algorithms for instances resilient to O(1) factor perturbations.

In this talk, for center-based objectives, we present an algorithm that can optimally cluster instances resilient to (1+\sqrt{2})-factor perturbations, solving an open problem of Awasthi et al. For k-median, a center-based objective of special interest, we additionally give algorithms for a more relaxed assumption in which we allow the optimal solution to change in a small fraction of the points after perturbation. We give the first bounds known for k-median under this more realistic and more general assumption. We also provide positive results for min-sum clustering which is a generally much harder objective than center-based objectives. Our algorithms are based on new linkage criteria that may be of independent interest.