Cryptography began as a rigorous formalization of issues arising in data and computer security (encryption, authentication, etc.), but has since expanded to touch upon many other areas of theoretical computer science (the most striking example being the concept of "zero-knowledge proofs"). Research at UMD explores both the practical and the theoretical aspects of this field. A primary motivation is to understand the <em>efficiency</em> of cryptographic solutions by (1) improving the computational/communication complexity of existing protocols, (2) using new number-theoretic assumptions to speed up current constructions, (3) designing improved algorithms for faster computation, and (4) proving lower bounds on the best possible efficiency that can be achieved. | Cryptography began as a rigorous formalization of issues arising in data and computer security (encryption, authentication, etc.), but has since expanded to touch upon many other areas of theoretical computer science (the most striking example being the concept of "zero-knowledge proofs"). Research at UMD explores both the practical and the theoretical aspects of this field. A primary motivation is to understand the <em>efficiency</em> of cryptographic solutions by (1) improving the computational/communication complexity of existing protocols, (2) using new number-theoretic assumptions to speed up current constructions, (3) designing improved algorithms for faster computation, and (4) proving lower bounds on the best possible efficiency that can be achieved. |