Anonymous

Changes

From cvss
1,801 bytes added ,  17:57, 9 July 2011
no edit summary
Line 58: Line 58:  
| July 14
 
| July 14
 
| Behjat Siddiquie
 
| Behjat Siddiquie
|
+
| Utilizing Contextual Information for Scene Understanding and Image Retrieval
 
|-
 
|-
 
| July 21
 
| July 21
Line 114: Line 114:     
The utility of context for supervised object recognition has been well acknowledged from the early seventies, and has been practically demonstrated by many systems in the last few years. The goal of this talk is to understand the role of context in unsupervised pattern identification scenarios. We consider two problems of clustering a set of unlabelled data points using maximum margin principles, and adapting a classifier trained on a specific domain to identify instances across novel domain shifting transformations, and propose contextual sources that provide pertinent information on the identity of the unlabelled data.
 
The utility of context for supervised object recognition has been well acknowledged from the early seventies, and has been practically demonstrated by many systems in the last few years. The goal of this talk is to understand the role of context in unsupervised pattern identification scenarios. We consider two problems of clustering a set of unlabelled data points using maximum margin principles, and adapting a classifier trained on a specific domain to identify instances across novel domain shifting transformations, and propose contextual sources that provide pertinent information on the identity of the unlabelled data.
 +
 +
 +
===Utilizing Contextual Information for Scene Understanding and Image Retrieval===
 +
Speaker: [http://www.cs.umd.edu/~behjat/ Behjat Siddiquie]
 +
 +
In many vision tasks, contextual information can often help disambiguate confusions arising from appearance information. In this talk, I will discuss two different works, which deal with effective utilization of contextual information to improve the performance of active learning for scene understanding and multi-attribute based image retrieval.
 +
 +
First, I will propose an active learning framework to simultaneously learn appearance and contextual models for scene understanding tasks (multi-class classification). Current multi-class active learning approaches ignore the contextual interactions between different regions of an image and the fact that knowing the label for one region provides information about the labels of other regions. We explicitly model the contextual interactions between regions and select the question which leads to the maximum reduction in the combined entropy of all the regions in the image (image entropy).
 +
 +
Next, I will present a novel approach for ranking and retrieval of images based on multi-attribute queries. Existing image retrieval methods train separate classifiers for each word and heuristically combine their outputs for retrieving multi-word queries. Moreover, these approaches ignore the interdependencies among the query words. In contrast, we propose a principled approach for multi-attribute retrieval which explicitly models the correlations that are present between the attributes. Given a multi-attribute query, we also utilize other attributes in the vocabulary which are not present in the query, for ranking/retrieval.
     
199

edits