We seek to solve the face identification problem across variations in expression and lighting together in a single framework. In order to understand variations in expression, a dense correspondence between images must be found, leading to algorithms similar to Optical Flow. We present a new lighting-insensitive metric to drive this Optical Flow-like framework. An extension of this work to the manifold of face images is then proposed, where a curve on the manifold represents the way a face might morph through time, allowing pixels to vary slowly as properties of the face change. The length of the geodesic connecting a pair of faces defines their similarity for nearest neighbor matching. | We seek to solve the face identification problem across variations in expression and lighting together in a single framework. In order to understand variations in expression, a dense correspondence between images must be found, leading to algorithms similar to Optical Flow. We present a new lighting-insensitive metric to drive this Optical Flow-like framework. An extension of this work to the manifold of face images is then proposed, where a curve on the manifold represents the way a face might morph through time, allowing pixels to vary slowly as properties of the face change. The length of the geodesic connecting a pair of faces defines their similarity for nearest neighbor matching. |