Iris recognition is one of the most popular approaches for human authentication, since the iris patterns are unique for each person and remain stable for long periods of time. However, existing algorithms for iris recognition require clean iris images, which limit their utility in unconstrained environments like surveillance. In this work, we develop an unconstrained iris recognition algorithm by modeling the inherent structure in clean iris images using sparse representations. The proposed algorithm recognizes the test image and also predicts the quality of acquisition. We further extend the introduced algorithm by a quality based fusion framework, which combine the recognition results from multiple test images. Extensive evaluation on existing datasets clearly demonstrate the utility of the proposed algorithm for recognition and image quality estimation. | Iris recognition is one of the most popular approaches for human authentication, since the iris patterns are unique for each person and remain stable for long periods of time. However, existing algorithms for iris recognition require clean iris images, which limit their utility in unconstrained environments like surveillance. In this work, we develop an unconstrained iris recognition algorithm by modeling the inherent structure in clean iris images using sparse representations. The proposed algorithm recognizes the test image and also predicts the quality of acquisition. We further extend the introduced algorithm by a quality based fusion framework, which combine the recognition results from multiple test images. Extensive evaluation on existing datasets clearly demonstrate the utility of the proposed algorithm for recognition and image quality estimation. |