Anonymous

Changes

From cvss
1,195 bytes added ,  20:40, 1 February 2013
Line 98: Line 98:     
In this paper we address the problem of object-class retrieval in large image data sets: given a small set of training examples defining a visual category, the objective is to efficiently retrieve images of the same class from a large database. We propose two contrasting retrieval schemes achieving good accuracy and high efficiency. The first exploits sparse classification models expressed as linear combinations of a small number of features. These sparse models can be efficiently evaluated using inverted file indexing. Furthermore, we introduce a novel ranking procedure that provides a significant speedup over inverted file indexing when the goal is restricted to finding the top-k (i.e., the k highest ranked) images in the data set. We contrast these sparse retrieval models with a second scheme based on approximate ranking using vector quantization. Experimental results show that our algorithms for object-class retrieval can search a 10 million database in just a couple of seconds and produce categorization accuracy comparable to the best known class-recognition systems.
 
In this paper we address the problem of object-class retrieval in large image data sets: given a small set of training examples defining a visual category, the objective is to efficiently retrieve images of the same class from a large database. We propose two contrasting retrieval schemes achieving good accuracy and high efficiency. The first exploits sparse classification models expressed as linear combinations of a small number of features. These sparse models can be efficiently evaluated using inverted file indexing. Furthermore, we introduce a novel ranking procedure that provides a significant speedup over inverted file indexing when the goal is restricted to finding the top-k (i.e., the k highest ranked) images in the data set. We contrast these sparse retrieval models with a second scheme based on approximate ranking using vector quantization. Experimental results show that our algorithms for object-class retrieval can search a 10 million database in just a couple of seconds and produce categorization accuracy comparable to the best known class-recognition systems.
 +
 +
===Dog Breed Classification Using Part Localization===
 +
Speaker: [http://www.cs.umd.edu/~kanazawa/ Angjoo Kanazawa] -- Date: February 7, 2013
 +
 +
We propose a novel approach to fine-grained image classification in which instances from different classes share common parts but
 +
have wide variation in shape and appearance. We use dog breed identification as a test case to show that extracting corresponding parts improves classification performance. This domain is especially challenging since the appearance of corresponding parts can vary dramatically, e.g., the faces of bulldogs and beagles are very different. To find accurate correspondences, we build exemplar-based geometric and appearance models of dog breeds and their face parts. Part correspondence allows us to extract and compare descriptors in like image locations. Our approach also features a hierarchy of parts (e.g., face and eyes) and breed-specific part localization. We achieve 67% recognition rate on a large  real-world dataset including 133 dog breeds and 8,351 images, and experimental results show that accurate part localization significantly increases classification performance compared to state-of-the-art approaches.
    
==Past Semesters==
 
==Past Semesters==
50

edits