| Speaker: [http://www.kotahara.com/ Kota Hara] -- Date: February 28, 2013 | | Speaker: [http://www.kotahara.com/ Kota Hara] -- Date: February 28, 2013 |
| Boosting techniques have been applied to various computer vision tasks, however, most of them are used for classification purposes. In this talk, I will first present Boosted Regression Tree (BRT), a regression version of the boosting used with regression trees, and its simple extension to multidimensional output regression. Then I will show the applications of the BRT on three computer vision tasks, head pose estimation, human pose estimation and class-specific object shape estimation. The BRT is applied to the head pose estimation task straightforwardly. In the human pose estimation task, a body pose estimation task is divided into a set of local pose estimation tasks that maintain a dependency structure and the BRT is used to solve those local pose estimation tasks in a successive manner. Lastly, the class-specific object shape estimation task is addressed by introducing a low dimensional space representing the object shape manifold and using it to bridge the image feature space and the original object shape space. | | Boosting techniques have been applied to various computer vision tasks, however, most of them are used for classification purposes. In this talk, I will first present Boosted Regression Tree (BRT), a regression version of the boosting used with regression trees, and its simple extension to multidimensional output regression. Then I will show the applications of the BRT on three computer vision tasks, head pose estimation, human pose estimation and class-specific object shape estimation. The BRT is applied to the head pose estimation task straightforwardly. In the human pose estimation task, a body pose estimation task is divided into a set of local pose estimation tasks that maintain a dependency structure and the BRT is used to solve those local pose estimation tasks in a successive manner. Lastly, the class-specific object shape estimation task is addressed by introducing a low dimensional space representing the object shape manifold and using it to bridge the image feature space and the original object shape space. |