Texture modeling and representation has been the subject of interest of several research works in the last decades. This presentation will focus on texture representation using multi-scale decompositions. More specifically, a new statistical framework, based on finite mixtures of Generalized Gaussian (MoGG) distributions, will be presented to model the distribution of multi-scale wavelet/contourlet decomposition coefficients of texture images. After a brief review of the state of the art about wavelet/contourlet statistical modeling, details about parameter estimation of the MoGG model will be presented. Then, two applications will be shown for the proposed approach, namely: wavelet/contourlet-based texture classification and retrieval, and fabric texture defect detection. Experimental results with comparison to recent state of the art methods will be presented as well. | Texture modeling and representation has been the subject of interest of several research works in the last decades. This presentation will focus on texture representation using multi-scale decompositions. More specifically, a new statistical framework, based on finite mixtures of Generalized Gaussian (MoGG) distributions, will be presented to model the distribution of multi-scale wavelet/contourlet decomposition coefficients of texture images. After a brief review of the state of the art about wavelet/contourlet statistical modeling, details about parameter estimation of the MoGG model will be presented. Then, two applications will be shown for the proposed approach, namely: wavelet/contourlet-based texture classification and retrieval, and fabric texture defect detection. Experimental results with comparison to recent state of the art methods will be presented as well. |