Anonymous

Changes

From cvss
72 bytes added ,  16:23, 12 August 2013
no edit summary
Line 33: Line 33:  
| [http://www.cs.umd.edu/~jasonfil/ Jason Filippou]
 
| [http://www.cs.umd.edu/~jasonfil/ Jason Filippou]
 
| Probabilistic Event Calculus based on Markov Logic Networks. Skarlatidis et al., RuleML '11 ([http://www.cs.umd.edu/~jasonfil/files/cvss_07_03.pdf Slides])
 
| Probabilistic Event Calculus based on Markov Logic Networks. Skarlatidis et al., RuleML '11 ([http://www.cs.umd.edu/~jasonfil/files/cvss_07_03.pdf Slides])
Additional: Event Modeling and Recognition using Markov Logic Networks. Tran and Davis, ECCV '08<br/>
+
Event Modeling and Recognition using Markov Logic Networks. Tran and Davis, ECCV '08<br/>
Additional: A Probabilistic Logic Programming Event Calculus. Skarlatidis et al., TPLP '14
+
A Probabilistic Logic Programming Event Calculus. Skarlatidis et al., TPLP '14
 
|-
 
|-
 
| July 11
 
| July 11
 
| [http://www2.math.umd.edu/~dshaw3/ David Shaw]
 
| [http://www2.math.umd.edu/~dshaw3/ David Shaw]
 
| Graphical Models. Jordan, StatSci '04
 
| Graphical Models. Jordan, StatSci '04
Additional: Nonparametric Belief Propagation. Sudderth et al.,  Commun. ACM '10
+
Nonparametric Belief Propagation. Sudderth et al.,  Commun. ACM '10
 
|-
 
|-
 
| July 18
 
| July 18
 
| [http://www.umiacs.umd.edu/~sameh/ Sameh Khamis]
 
| [http://www.umiacs.umd.edu/~sameh/ Sameh Khamis]
 
| Coupling Detection and Data Association for Multiple Object Tracking. Wu et al, CVPR '12
 
| Coupling Detection and Data Association for Multiple Object Tracking. Wu et al, CVPR '12
Additional: Discrete-Continuous Optimization for Multi-Target Tracking. Andriyenko et al, CVPR '12<br/>
+
Discrete-Continuous Optimization for Multi-Target Tracking. Andriyenko et al, CVPR '12<br/>
Additional: Multi-target Tracking by Lagrangian Relaxation to Min-Cost Network Flow. Butt and Collins, CVPR '13
+
Multi-target Tracking by Lagrangian Relaxation to Min-Cost Network Flow. Butt and Collins, CVPR '13
    
|-
 
|-
Line 55: Line 55:  
| Raviteja Vemulapalli
 
| Raviteja Vemulapalli
 
| Structured Learning and Prediction in Computer Vision. Nowozin and Lampert, now publishers '11 (Chapter 6)
 
| Structured Learning and Prediction in Computer Vision. Nowozin and Lampert, now publishers '11 (Chapter 6)
Additional: Kernelized Structural SVM Learning for Supervised Object Segmentation. Bertelli et al, CVPR '11
+
Kernelized Structural SVM Learning for Supervised Object Segmentation. Bertelli et al, CVPR '11
 
|-
 
|-
 
| August 8
 
| August 8
Line 64: Line 64:  
| August 15
 
| August 15
 
| Le Kang
 
| Le Kang
| TBA
+
| Gradient-Based Learning Applied to Document Recognition. LeCun et al, IEEE '98
 +
Tutorial on Implementing a Convolutional Neural Network with Theano.
 
|-
 
|-
 
| August 22
 
| August 22
199

edits