Anonymous

Changes

From cvss
2 bytes removed ,  20:56, 20 November 2014
Line 78: Line 78:     
Abstract: Image based geolocation aims to answer the question: where was this ground photograph taken? We present an approach to geoloca- lating a single image based on matching human delineated line segments in the ground image to automatically detected line segments in ortho images. Our approach is based on distance transform matching. By ob- serving that the uncertainty of line segments is non-linearly amplified by projective transformations, we develop an uncertainty based repre- sentation and incorporate it into a geometric matching framework. We show that our approach is able to rule out a considerable portion of false candidate regions even in a database composed of geographic areas with similar visual appearances.
 
Abstract: Image based geolocation aims to answer the question: where was this ground photograph taken? We present an approach to geoloca- lating a single image based on matching human delineated line segments in the ground image to automatically detected line segments in ortho images. Our approach is based on distance transform matching. By ob- serving that the uncertainty of line segments is non-linearly amplified by projective transformations, we develop an uncertainty based repre- sentation and incorporate it into a geometric matching framework. We show that our approach is able to rule out a considerable portion of false candidate regions even in a database composed of geographic areas with similar visual appearances.
      
===Knowing a Good HOG Filter When You See It: Efficient Selection of Filters for Detection===
 
===Knowing a Good HOG Filter When You See It: Efficient Selection of Filters for Detection===
Line 84: Line 83:     
Abstract: Collections of filters based on histograms of oriented gradients (HOG) are common for several detection methods, notably, poselets and exemplar SVMs. The main bottleneck in training such systems is the selection of a subset of good filters from a large number of possible choices. We show that one can learn a universal model of part “goodness” based on properties that can be computed from the filter itself. The intuition is that good filters across categories exhibit common traits such as, low clutter and gradients that are spatially correlated. This allows us to quickly discard filters that are not promising thereby speeding up the training procedure. Applied to training the poselet model, our automated selection procedure allows us to improve its detection performance on the PASCAL VOC data sets, while speeding up training by an order of magnitude. Similar results are reported for exemplar SVMs.
 
Abstract: Collections of filters based on histograms of oriented gradients (HOG) are common for several detection methods, notably, poselets and exemplar SVMs. The main bottleneck in training such systems is the selection of a subset of good filters from a large number of possible choices. We show that one can learn a universal model of part “goodness” based on properties that can be computed from the filter itself. The intuition is that good filters across categories exhibit common traits such as, low clutter and gradients that are spatially correlated. This allows us to quickly discard filters that are not promising thereby speeding up the training procedure. Applied to training the poselet model, our automated selection procedure allows us to improve its detection performance on the PASCAL VOC data sets, while speeding up training by an order of magnitude. Similar results are reported for exemplar SVMs.
      
===Growing Regression Forests by Classification: Applications to Object Pose Estimation===
 
===Growing Regression Forests by Classification: Applications to Object Pose Estimation===
77

edits